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The factors which affect the sound production of a vortex as it passes through a
nozzle are investigated at both low and high Mach numbers using time-accurate
inviscid-flow computations. Vortex circulation, initial position, and mean-flow Mach
number are shown to be the primary factors which influence the amplitude and phase
of the sound produced. Nozzle geometry and distribution of vorticity are also shown
to play significant roles in determining the detailed form of the signal. Additionally,
it is shown that solution bifurcations are possible at sufficiently large values of
vortex circulation. Comparisons are made between sound signals computed directly
using a numerical method for the Euler equations and predictions obtained using a
compressible vortex-sound analogy coupled with a compact-source assumption for
the computation of vorticity dynamics. The results confirm that the latter approach is
accurate for a range of problems with low mean-flow Mach numbers. At higher Mach
numbers, however, the non-compactness of the source becomes apparent, resulting
in significant changes to the character of the signal which cannot be predicted using
the analogy-based approach. Implications for the construction of simplified models
of vortex sound in solid-rocket nozzles are discussed.

1. Introduction
Sound production due to vortex–nozzle interactions has been recently identified

as a potential source for the large-amplitude low-frequency pulsations observed in
solid-rocket motors (Dunlap & Brown 1981; Dotson, Koshigoe & Pace 1997; Vuillot
1995). Solid-rocket flows are very complex, as they include combustion, entrained
solid phases, and time-variant geometries. There is therefore considerable motivation
to develop simplified models of the processes contributing to the pulsations. Most of
a rocket-nozzle flow is subsonic, motivating attempts (see Hirschberg et al. 1998) to
model the contribution of vortex–nozzle sound production using the incompressible
vortex-sound theory of Powell (1964), or the compressible counterpart developed by
Howe (1975b). For both approaches a compact-source assumption may be employed,
allowing the vorticity dynamics to be efficiently computed using an incompressible
description of the flow. As the throat of a solid-rocket nozzle operates at sonic
conditions, however, it is not clear to what extent vortex-sound theory can be used to
adequately describe the most important elements of vortex–nozzle sound production.

In this paper we will examine vortex–nozzle sound production in detail, using the
results of numerical simulations. The goal is to investigate the influence of vortex
position and strength, nozzle geometry, and the effects of compressibility, in order to
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gauge their relative importance for the construction of approximate models. A number
of authors have considered similar problems using analytic techniques (Flandro 1986;
Dunne & Howe 1997) and numerical techniques suitable for low Mach number
flows (Conlisk & Rockwell 1981; Hourigan, Welsh & Thompson 1990; Thompson,
Hourigan & Welsh 1992). Here we examine the range of application of low Mach
number approximations by comparison with more general numerical solutions.

In the first part of the paper, the parameters influencing vortex–nozzle sound
at low Mach numbers are investigated using a vortex-blob potential-flow technique
combined with the acoustic analogy developed by Howe (see Howe 1975a, b). In the
second part, a numerical solution procedure for the full Euler equations is used to
investigate the influence of compressibility.

The nozzle geometries considered are two-dimensional, corresponding to experi-
mental models which have been used to study vortex–nozzle interactions in the absence
of combustion (Couton et al. 1998). These are planar in geometry for improved optical
access. We also consider only monotonically converging nozzles, without additional
cavities in the inlet region. This limits the possible influence of flow separations which
may occur from smooth portions of the nozzle walls. For the relatively high Reynolds
numbers of interest, the location and details of such separations are very difficult
to predict. In contrast, for rectangular nozzle geometries it is possible to specify a
separation point at the sharp edge of the nozzle inlet. When the vortex blob method
is used, this could be done using a single vortex at the sharp edge, as proposed by
Brown & Micheal (1954). This idea has been used in aero-acoustics by Howe (1975b,
1998) and Peters (1993). In view of the uncertainties present in such models, however,
we limit ourselves to the consideration of the purely inviscid sound-production effects
present for all geometries considered in this study.

The monotonically converging nozzles considered here are in contrast to some
integrated nozzle designs appearing in solid-rocket motors, which have an additional
cavity in the area near the inlet. Recently, Anthoine, Buchlin & Guery (2000) have
demonstrated that such cavities act to increase the level of sound production. This
may be explained in terms of vortex-sound theory, which predicts an increase roughly
proportional to the volume of the cavity, corresponding to the scaling law for the
acoustical velocity at the vortex path. We consider here the limit case of zero cavity
volume, which therefore corresponds to nozzle designs which have minimum sound
production.

2. Vortex–nozzle sound at low Mach numbers
Figure 1 illustrates the basic geometry of a vortex–nozzle interaction. A distribution

of vorticity, with an initial mean height of h, is convected past a nozzle separating two
sections of channel with heights S1 and S2. The channels are assumed to be of infinite
length, so that both the upstream and downstream conditions are anechoic. Sound
production occurs due to interaction of the vortex with the change in geometry, and
acoustic waves p− and p+ are radiated upstream and downstream. For low Mach
number flows, we first investigate the problem using a vortex-blob potential-flow
solution procedure originally developed by Krasny (1987) (see also Hofmans 1998;
Graziani, Ranucci & Piva 1995; Peters 1993), coupled with the acoustic analogy
derived by Howe. A number of different conditions are considered in order to
investigate the effects of nozzle geometry and vorticity strength and distribution. To
simplify the discussion, we will limit our attention to the upstream-travelling wave,
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Figure 1. Vortex convection through a nozzle.

p−, and to negative vortex circulations. In a solid-rocket motor, the vortex circulations
generated are negative in sign, and it is the p− wave which drives the instability.

2.1. Acoustic analogy

For sufficiently low Mach numbers, the sound production region near the geometric
change may be assumed to be compact. It is then possible to derive analytic ex-
pressions for p−. This problem has been considered by Howe (1975b), who derived
expressions for perturbations due the convection of both entropic and vortical inho-
mogeneities in internal flows with changes in cross-sectional area. Howe’s analogy is
based on Crocco’s relation:

∂v

∂t
+ ∇B = −ω × v + T∇s (2.1)

where v is the total velocity vector, B is the total enthalpy, ω is the vorticity vector,
and T and s are the local values of temperature and entropy. Combining this equation
with the mass conservation law:

1

ρ

Dρ

Dt
= −∇ · v (2.2)

where ρ is the local density and D/Dt = ∂/∂t + v · ∇, the following exact non-
homogeneous equation can be obtained:
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where for an isentropic flow, DS/Dt = 0. Here i is the local value of enthalpy, co
is the speed of sound of a mean flow which has a value U for the steady part of
its potential-flow component of the velocity, and Do/Dt = ∂/∂t+U · ∇ corresponds
to that mean flow. Howe’s analogy (2.3) is still exact within the inviscid, isentropic
flow assumption. We can interpret the right-hand side of this equation as sources of
sound as heard by a listener immersed in the uniform reference flow. Like Lighthill’s
analogy, this expression requires approximation in order to be more tractable than
the original governing equations. For low Mach numbers (M < 0.3), the second term
in the source appears to be negligible (see Howe 1998). We will further assume that
the source region is compact, which in combination with an assumed simple-wave
region far upstream in the channel, allows the use of Howe’s low-frequency Green
function. The use of such an integral formulation, similar to the case of Lighthill’s
analogy (Lighthill 1954), is a crucial beneficial step, as it smooths out errors in the
evaluation of the source term.

By using the reverse-flow theorem (Howe 1975b), it is possible to derive expressions
for far-field total enthalpy perturbations based on the convolution of a low-frequency
approximation to the Green’s function. For regions far upstream of the nozzle, the
total enthalpy perturbation may be expressed as

B− =
S2

S1(S1 + S2)(1−M2)
·
∫
V

[(ω × v − T∇s) · ∇φ∗] dV (2.4)
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where φ∗ is the velocity potential of the irrotational flow associated with the acoustic
perturbation (normalized so that ∇φ∗ = 1 far upstream), V is a volume enclosing the
source region, M2 is the downstream Mach number, and the quantities within the
square brackets are evaluated at a retarded time proportional to the distance between
the source and the far-field point at which the perturbation is measured. For small
changes of enthalpy in the upstream region

B− =
p−

ρo
(1−M1) + O(M2) (2.5)

where M1 is the upstream Mach number. For a homoentropic flow, the upstream
pressure perturbation may then be expressed as

p−1 =
S2

S1(S1 + S2)(1−M1)(1−M2)
·
∫
V

ρo[(ω × v) · ∇φ∗] dV . (2.6)

This illustrates that for the low Mach numbers which allow the source region to
be described as compact, the acoustic perturbation is directly proportional to the
strength of the Lamb vector, ω × v. There is also a significant amplitude dependence
on the Mach numbers characterizing the mean flow.

Expression (2.6) forms an acoustic analogy for the upstream pressure perturbation
history in terms of the vorticity dynamics within the source region. It corresponds to
a generalization of the Powell analogy (Powell 1964) from stagnant free-field reference
conditions to confined uniform-flow reference conditions. As variations of density in
the source region have been neglected, however, the level of approximation is similar
to that of Powell’s analogy. We therefore refer to (2.6) as the Powell–Howe analogy.
Although attractive for its simplicity, the range of validity of this approach is unclear,
and could be very limited. This will be explored by comparisons with the full Euler
method in later sections.

2.2. Vortex-blob method

For low Mach numbers, the vorticity dynamics of the source are computed using
a vortex-blob method. The vortex-blob method used here is based on a singularity-
distribution approach for the solution of plane potential flows. The boundaries of the
domain are discretized using piecewise-constant vorticity and source distributions, the
strengths of the latter being determined by the local specified normal velocity. In the
interior of the domain, the vorticity of the flow is represented using a fixed number
of point vortices. Instantaneous velocity fields are computed by the application of a
Dirichlet condition on the potentials just outside each panel used to discretize the
boundaries of the domain. The positions of the interior point vortices are advanced
in time using a fourth-order Runge–Kutta technique, in which the flow velocities are
continually updated. In order to prevent erratic movement of point vortices in close
proximity to each other, the induced velocity field of each vortex is de-singularized
during the position update calculation, as described in Krasny (1987).

2.3. Results

For low Mach numbers, the differences in the retarded time of the terms within the
square brackets of (2.6) are small. The influence of the inflow and outflow Mach
numbers may then be taken into account in terms of factors which scale the pressure
perturbation of the M = 0 limit. For this section, we thus restrict our attention
to M = 0 mean flows, and focus on the effects of vorticity distribution and nozzle
geometry.



Sound production of vortex–nozzle interactions 339

(a) (b)

Figure 2. Overview of the vortex trajectory (a), and magnified comparison of the trajectory (solid)
with the irrotational mean flow streamlines (dashed) (b).

The most simplified representation of the problem is that of a point vortex in-
teracting with a square nozzle geometry. Figure 2 shows the trajectory computed
with the vortex-blob method for a point vortex with circulation Γ = −1.2 (non-
dimensionalized by U1S1) interacting with a rectangular nozzle with an area ratio
of 3.0. Such values are similar to those encountered in the Ariane V solid rocket
motor at the beginning of combustion. A magnified view of the vortex trajectory is
compared with two streamlines from the steady irrotational potential flow case in
figure 2(b). During the approach, the trajectory of the vortex begins to deviate from
the irrotational-flow streamlines as it is increasingly influenced by its image system
located behind the nozzle walls. The deviation reaches a maximum just behind the
entrance to the nozzle, and after a slight decrease, remains at a constant value as
the vortex proceeds downstream. The resulting upstream pressure perturbation time
history is shown in figure 3 (time non-dimensionalized by S1/U1, change in pres-
sure by 1

2
ρ1U

2
1 ). A negative pressure perturbation of increasing magnitude is created

as the vortex approaches the vertical wall, which transitions quickly to a positive
perturbation as the vortex passes above it. As illustrated in figure 4, this behaviour
can be anticipated from (2.6). As the point vortex approaches, its deviation from
the irrotational streamlines produces a clockwise rotation of ω × v, resulting in a
component opposing the local irrotational velocity, leading to a negative upstream
pressure perturbation. This situation is reversed as vortex passes above the vertical
wall. In figure 5 the details of the pressure spike are shown for different time steps
and for different numbers of surface panels. The relatively small variation between
the various discretizations indicates that the numerical errors associated with the
potential-flow solution technique are reasonably small.

Pressure perturbations computed for different initial vortex positions are com-
pared in figure 6. The parameter h is measured from the lower wall, and is non-
dimensionalised by the inflow channel height, S1. As the initial position approaches
the lower wall of the geometry, the signal is observed to be delayed, owing to the
increasing influence of the image vortex below the wall. Note that the influence of
the lower-wall image vortex does not increase sound production in the upstream
portion of the flow, as its induction is parallel to the irrotational velocity field. As
the vortex approaches the nozzle, however, its sound production is increased relative
to the cases with higher initial vortex position. This is due to the increased proximity
with which the vortex approaches the corner of the nozzle inlet. Not only are the
irrotational velocity gradients higher as the corner is approached, but the image vor-
tex system gains increasing influence over the vortex path. These two factors produce
pressure perturbation amplitudes which increase nonlinearly with decreasing initial
vortex height.

An effect similar to that obtained by lowering the initial vortex position is obtained
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Figure 3. Upstream pressure perturbation computed with the vortex-blob technique
(S1/S2 = 3, Γ = −1.2, h = 0.4).
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Figure 4. The varying terms of (2.6) for a point vortex of negative circulation approaching a wall.

by increasing the vortex circulation. In this case, increases in signal delay are also
obtained, along with far larger changes in the magnitude of the pressure perturbation
(figure 7). The latter implies a significant increase in vortex-path deviation from the
irrotational streamlines due to the image vortex system.

The effects of changing vortex position and circulation are accentuated when the
inflow of the nozzle is increased in size. Computations for a square nozzle with
S1/S2 = 11.7 for various values of vortex circulation are shown in figure 8 (this
value corresponds to the largest S1/S2 for the combustion chamber of the Ariane V
solid-rocket motor, occurring near the end of the combustion cycle). The sharpness of
the pressure perturbation increases with increasing vortex circulation, until a value is
reached at which the vortex fails to exit the domain (figure 9), due to the dominating
effect of its image system.

The increasing sharpness of the pressure perturbation signal as the corner is
approached is directly related to the singular pressure field associated with the
geometric discontinuity. This tends to bias the power of the signal towards higher
frequencies. The signal from a rounded S1/S2 = 3 nozzle with a geometric expansion
after the throat (figure 10) is shown for three values of vortex circulation in in
figure 11. In addition to an increased characteristic time for the signal, the negative
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Figure 5. Details of the pressure minimum for varying levels of spatial and temporal discretization
(d= ratio of corner panel size to throat, n= number of time steps, S1/S2 = 3, Γ = −1.2, h = 0.4).
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Figure 6. Upstream pressure perturbations for varying initial vortex heights
(S1/S2 = 3, Γ = −0.8, vortex-blob method, equation (2.6)).
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Figure 7. Upstream pressure perturbations for varying vortex strengths
(S1/S2 = 3, h = 0.4, equation (2.6)).
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Figure 8. Upstream pressure perturbations for varying vortex strengths
(S1/S2 = 11.7, h = 0.5, equation (2.6)).
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Figure 9. Vortex trajectories for varying vortex strengths (S1/S2 = 11.7, h = 0.5, equation (2.6)).

Figure 10. Rounded S1/S2 = 3 nozzle geometry.

pressure peaks and their rate of increase with circulation are attenuated. The positive
pressure peak is also of longer duration owing to the slow expansion after the throat.

The final effect considered with the low-Mach-number model is that of distributed
vorticity. Figure 12 compares a single-vortex pressure trajectory with that of a distri-
bution of vortices of equivalent total circulation. The distribution was initially circular
in shape, with approximately equal spacing between vortices and a centre of vorticity
initially at the same initial position as the point vortex. The cloud of distributed
vortices is seen to deform as the nozzle is approached, and stretch considerably as it
passes through the throat. After the throat, the stretched cloud rotates and deforms
about its convecting centre of vorticity. The pressure perturbations of the single- and
multiple-vortex computations are compared in figure 13. In spite of its simplified
behaviour, the point vortex is seen to provide a fair approximation to the sound
generated by a patch of more distributed vorticity.
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Figure 11. Upstream pressure perturbations for the rounded geometry
(S1/S2 = 3, rounded, h = 0.4, equation (2.6)).

Figure 12. Trajectory of a single vortex (solid line) compared with an equivalent cloud of vortices
at t = 10, 20, 30, 40, 50 (from left to right).
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Figure 13. Upstream pressure perturbations for the single and equivalent cloud of vortices
(S1/S2 = 3, rounded, h = 0.4, Γ = −0.8 equation (2.6)).

3. Vortex–nozzle sound at higher Mach numbers
In many internal flow applications, the flow Mach numbers, particularly in the

region of the nozzle, can be relatively high. For such cases, the assumptions on which
the methods of the previous section are based break down. The source region may
no longer be considered compact, and variation of relative time delays may become
significant for distributed regions of vorticity. In addition, the effects of compressibility
can substantially alter the influence of the main flow.

To investigate these effects, a time-accurate numerical procedure for the Euler
equations was employed. This technique allows an accurate representation of non-
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Figure 14. Overview of the numerical domain for the Euler computations.

compact sources and mean-flow compressibility, as well as allowing the acoustic
perturbations to be measured directly.

3.1. Euler method

The time-accurate Euler computations were performed in the numerical domain
illustrated in figure 14. The spatial discretization of the Euler equations was based on
a two-dimensional, second-order-accurate finite-volume method with scalar nonlinear
artificial dissipation (Hulshoff, Hoeijmakers & Mulder 1996). Time integration was
performed using an explicit Runge–Kutta technique. The conditions described in
Thompson (1987, 1990) were used to maintain anechoic conditions at the inflow and
outflow boundaries. For choked conditions, the anechoic outflow boundary condition
was replaced by the variable incoming-wave strength conditions described by Poinsot
& Lele (1992), configured to maintain a constant exit pressure.

In order to assess the effects of discretization errors on the numerical solutions,
computations were performed on both coarse- and fine-mesh discretizations of the
domain. The fine mesh had 329 nodes in the streamwise direction and 89 nodes in the
normal direction for the first block (located upstream of the nozzle), and 465 nodes
in the streamwise direction and 33 normal nodes for the second block (containing the
nozzle and exit regions). The coarse mesh was generated with a refinement pattern
similar to that of the fine mesh, but with the number of nodes reduced by factors of
two in both directions.

To determine the far-field upstream plane-wave response while limiting the extent
of the two-dimensional domain, an additional one-dimensional domain was used.
This was driven by a flux-conservative extraction from the inflow area of the two-
dimensional domain. The extraction was entirely passive, in that the two-dimensional
interior solution and its anechoic inflow boundary condition remained unaffected by
the procedure. The consistency of this approach was verified using calculations with
different extraction positions.

3.2. Initial vorticity distribution

The vortices used for the simulations were generated in the inflow region of the
two-dimensional domain by the application of a radially symmetric body-force field,
centred about a point travelling with the main flow velocity. The spatial distribution
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Figure 15. Upstream pressure perturbations computed directly with the Euler method on the fine
and coarse meshes (M1 = 0.01, Γ = −1.5, h = 0.4).

used was similar to that of the velocity field of a de-singularized incompressible
vortex. The body-force field was applied gradually in time, in order to minimize
excitation of transverse channel modes. A source term was also added to the energy
equation, with a local strength continually updated based on local deviations from
homoentropic flow. This prevented the generation of significant entropy gradients
resulting from numerical truncation errors within the high-gradient core region. After
completion of the vortex generation process, all the source terms were turned off to
prevent corruption of the vortex–nozzle interaction signal. In general, the generation
procedure provided consistent vortices, although the details of the core vorticity
distribution varied with the chosen vortex position and main flow Mach number.

In order to perform comparisons with results from the vortex-blob technique, the
vorticity distributions generated with the Euler method were also converted into
equivalent point-vortex distributions. This was done by computing local values of
circulation within control volumes defined using cells from the Euler mesh and as-
signing them vortices placed at averaged positions. To avoid the numerical difficulties
associated with large numbers of closely spaced vortices, groups of cells were used per
control volume, and point vortices were only defined when the circulation exceeded a
threshold value. The final circulations of the resulting point vortices were corrected so
that their total circulation was equivalent to that of the Euler vorticity distribution.

3.3. Validation at low Mach numbers

Upstream pressure time histories obtained directly from Euler computations for a
vortex–nozzle interaction with a flow Mach number of 0.01 are shown in figure 15
(time non-dimensionalized by S1/U1, change in pressure by 1

2
ρ1U

2
1 ). For each compu-

tation, the vortex was generated with its core positioned 0.4 times the height of the
channel above the lower wall, and had a final circulation of −1.5 (non-dimensionalized
by U1S1). The portion of the responses shown is that after the generation of the vortex.

The differences between the coarse- and fine-mesh results arise mostly due to their
relative differences in discretization errors associated with the transport of vorticity
over extended distances. In general, the coarse mesh was less able to maintain the
magnitude and distribution of vorticity in the core region as the vortex was convected
from its generation point to the nozzle. Discretization errors associated with the
propagation of the acoustic wave are also greater for coarser meshes, but these are
relatively small for the wavelengths being considered. In separate tests performed
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Figure 16. Upstream pressure perturbations measured directly from a fine-mesh Euler computation
compared with the perturbation obtained indirectly with (2.6) using a volume integration of the
computed Euler solution (M1 = 0.01, Γ = −1.5, h = 0.4).

with the numerical method, it was found that acoustic waves can be propagated with
less than 0.1% amplitude error per wavelength travelled provided a discretization of
more than 50 cells per wavelength is maintained. The discretization of the coarse
mesh is well in excess of this for both the longitudinal and transverse components of
the acoustic response.

In figure 16, an estimation for the upstream perturbation based on (2.6) is compared
with the perturbation measured directly from the fine-mesh computation. The integral
was evaluated in the volume between two channel widths forward and one channel
width aft of the throat, using the computed evolving vorticity distribution. The
portions of the signals shown corresponds to those for which the vortex was completely
contained by the volume. The good agreement of the signals also suggests that
wave propagation errors are small. Overall, the favourable agreement between coarse
and fine meshes, and between both methods for determining far-field upstream
responses, suggests that the discretization errors present within the fine-mesh results
are acceptably low.

In figure 17, the directly measured fine-mesh Euler signal is compared with that
computed using the vortex-blob method, interpreted with (2.6). The vortex-blob
calculation was initiated using a 237 point-vortex approximation to the M1 = 0.01
fine-mesh Euler vorticity distribution at t = 0.7. The vorticity distributions of the two
methods are compared at later times in figure 18. In general the response is similar to
that computed directly from the Euler solution. The comparison is again favourable
considering that the two methods have completely different sources of error.

3.4. The effect of increasing Mach number

Upstream pressure perturbations determined directly from Euler computations are
shown for a range of subcritical Mach numbers in figure 19. In all cases, the vortices
generated upstream had similar values of non-dimensionalized circulation, although
their initial vorticity distributions were not identical due to variations in vortex
generation with convection velocity. Also shown in each plot is the upstream pressure
perturbation determined using the vortex-blob technique, initiated using equivalent
point-vortex distributions.

The character of the directly measured Euler signal changes in a number of ways as
the Mach number is increased. First, there is an overall increase in the amplitude of
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Figure 17. Comparison of the directly determined Euler perturbation and the perturbation deter-
mined using the vortex-blob method initialized with the Euler vorticity field (M1 = 0.01, Γ = −1.5,
h = 0.4).

(a) (b)

Figure 18. Comparison of vorticity magnitude contours from the Euler computation (a) and
vortex blob positions (b) at tU/S = 1.7, 2, and 2.3 (M1 = 0.01, Γ = −1.5, h = 0.4).

the signal. Secondly, a small maximum develops before the main dip, which increases
relative to the remainder of the response with increasing Mach number. Thirdly,
the time scale of the aft portion of the signal is significantly increased. Finally, a
superimposed excitation, corresponding in frequency to the first transverse mode of
the upstream channel, appears on the aft portion of the signal, with an amplitude
increasing with Mach number.

In contrast, only the increase in signal amplitude is observed in the results computed
using the vortex-blob technique (This effect can be anticipated by considering the
Doppler factors (1−M1) and (1−M2) appearing in (2.6)). As the vortex-blob method
makes no computation of local Mach number, an estimate for the local retarded time
cannot be made. Thus it is unable to predict the increasing delay of the aft part of
the signal which arises due to the increasing throat Mach number. Finally, as the
expression (2.6) is based on the assumption of a plane propagating wave, it does not
allow representation of the oscillations corresponding to transverse mode excitations
observed in the Euler solution.
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Figure 19. Comparisons of Euler and vortex-blob computed perturbations for (a) M1 = 0.05,
(b) 0.10, (c) 0.15, and (d) 0.175 (Γ = −1.5, h = 0.4).
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Figure 20. Euler computation of upstream pressure perturbation in choked conditions
(M1 = 0.196, Γ = −1.5, h = 0.4).

3.5. Choked conditions

The upstream pressure perturbation due to the convection of a vortex through a
nozzle operating at choked conditions appears in figure 20. The circulation of the
vortex was similar to that considered in the previous subcritical cases. Instead of
an anechoic condition at the outflow boundary of the domain, however, a constant
pressure was approximately maintained by specifying variable-strength incoming
waves proportional to the local deviation from the required pressure. This allowed a
sonic throat to be maintained during the passage of the vortex through the nozzle.

The choked condition is characterized by the complete disappearance of the aft
maximum. As the vortex enters through the throat, it momentarily distorts the sonic
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Figure 21. Euler computation of upstream pressure perturbation in choked conditions for varying
circulations and initial heights (M1 = 0.196).

line, and then passes through it. Afterwards, the sound generation of the vortex is cut
off, leaving only the oscillations arising due to transverse mode excitation.

Results for varying vortex height and circulation are shown in figure 21. These
give similar effects to those observed for low Mach numbers, including the signal
retardation and nonlinear dependence of amplitude on circulation.

3.6. Bifurcations

In § 2.3, it was shown that for high values of circulation and low initial heights, it
is possible for a point vortex to become confined within a simple rectangular nozzle
domain. This type of solution bifurcation has also been observed with distributed
vorticity and geometrically smooth nozzles. Figure 22 shows vorticity magnitude plots
for two vortices with a relatively large initial circulation of Γ = −3.0 interacting with
a choked nozzle. The first of these (left), was generated at a height of of h = 0.4 and
produced the third signal shown in figure 21. Due to its high circulation, the vortex is
drawn closer to the lower throat surface, resulting in a stretched vorticity distribution.
The basic character of response, however, is unchanged from that of the Γ = −1.5
case.

In contrast, the Γ = −3.0 vortex released at h = 0.2 becomes only partially
stretched in the direction of the throat, while most of its vorticity remains trapped in
the corner of the geometry. (Note that the h = 0.2 vortex has initially more widely
distributed vorticity than the h = 0.4 case due to interactions with the lower wall
during the generation process.)

The resulting upstream perturbations are compared in figure 23. The h = 0.2 vortex
shows a marked reduction in the minimum pressure peak, as most of the vorticity does
not pass through the throat. The pressure minimum is followed by a low-frequency
oscillation, corresponding to the oscillation of the vortex core in the corner region.

The pulsations occurring in solid-rocket motors do not seem to include lower
hydrodynamic modes. The main reason for their absence is expected to be the
stabilizing effect of confinement on modes with a large wavelength compared to
the channel height. Bifurcations of the type described above, however, may also
provide an additional explanation. The lowest mode observed in Dotson et al. (1997)
corresponds to five vortices between the vortex generation point (a discontinuity in
the rocket propellant) and the nozzle. The presence of less than five vortices would
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Figure 22. Comparison of vorticity magnitude contours from two Euler computations with equiv-
alent initial vortex circulations but different initial heights (M1 = 0.196, Γ = −3.0; (a) h = 0.4,
(b) h = 0.2).
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Figure 23. Euler computation of upstream pressure perturbation in choked conditions from
two Euler computations with equivalent initial vortex circulations but different initial heights
(M1 = 0.196, Γ = −3.0).

imply larger values of circulation, which may prevent the individual ingestion of the
vortices by the nozzle. In the data of Dotson et al. a change to a lower acoustic mode
is finally observed when there are twelve vortices. This is expected to occur due to
the merging of these relatively weak vortices before the nozzle is reached.

4. Conclusion
We have considered the sound production of inviscid vortex–nozzle interactions at

both low and high Mach numbers, with the goal of characterizing the most important
factors that influence them. The results have implications for the construction of
approximate models used to predict solid-rocket motor pulsations.

The most important factors influencing the magnitude and phase of sound pro-
duction at low Mach numbers are the vortex circulation and its initial position. The
detailed geometry of the nozzle and the distribution of vorticity also play impor-
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tant roles in determining the precise form of the signal. It was confirmed that the
vortex-sound analogy for compact source regions developed by Howe, combined with
a simulation of incompressible vorticity dynamics introduced by Powell (referred to
here as the Powell–Howe analogy), can be used to accurately predict sound produc-
tion for nozzles operating at low Mach numbers. In fact, for smooth nozzles, a single
point vortex may be used to estimate the most important effects influencing sound
production.

At the higher operating Mach numbers typical of solid-rocket nozzles, the sound
production becomes significantly influenced by the non-compactness of the source.
This partly manifests itself as an increase in the time scale of the second half of
the signal, generated after the vortex enters the nozzle throat. The lengthening and
gradual attenuation of the second half of the signal appears to transition smoothly
to the result for choked conditions, where it disappears completely. An additional
effect observed at higher Mach numbers is the increasing pressure amplitudes in the
initial portions of the signal. These have been found to be in excess of the increases
predicted by the Doppler factors present in (2.4).

The importance of non-compact source effects and mean-flow compressibility at
higher Mach numbers means that the Powell–Howe analogy cannot be used to predict
all features of vortex sound generation in rocket-nozzle flows. From the point of view
of estimating the order of pulsation amplitudes, however, an acceptable approximation
might be obtained by truncating the signal obtained from the Powell–Howe analogy
after the vortex enters the throat region. This would be particularly applicable for
nozzle geometries which feature complex curvatures before the throat, for which much
of the sound generation is in the low Mach number region.

Finally, the study has shown that under conditions with large values of vortex
circulation, a solution bifurcation occurs. In such cases, the vortex may be partially
repelled from the nozzle. This effect may help to explain why only higher hydrody-
namic modes are observed in solid-rocket motors, as it precludes ingestion of the
large-circulation vortices that would be present in a lower-order pulsation.

Part of this work was carried out while S. J. H. was at the Department of Mechanical
Engineering, University of Twente, The Netherlands.
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